

nf_tables
2-phase commit protocol

speedup
NFWS 2017 Faro, Portugal
Pablo Neira Ayuso <pablo@netfilter.org>

Loading nf_tables ruleset

● Netlink interface w/2-phase commit protocol
– Preparation phase

– Commit phase (never fails)

● More detailed explanation to educate
developers here...

Loading nf_tables ruleset (2)

● Updates via nft -f are atomic
– You can perform incremental updates.

– Takes ~60 milliseconds in my laptop.

● time nft -f ruleset.nft
real 0m0.058s
user 0m0.000s
sys 0m0.008s

Loading nf_tables ruleset (3)

● Running tests/py/ is slow
– Lots of individual rule addition/deletions in a row

● Problem is two synchronize_rcu() calls in the
nf_tables_commit() path.
– First call makes sure no packets in the previous

generation: First bump generation counter, then
synchronize_rcu().

– Second call makes sure no packets walk over the
ruleset data structure.

Loading nf_tables ruleset (4)

● Removing second synchronize_rcu()
– Release transaction object via call_rcu()

● Add struct rcu_head in struct nft_trans
● Release object via call_rcu

– Problem:
● Anonymous sets:

– Released when no more references from rules to set.
– Destroy rhashtable trigger may sleep splat.

– Solution:
● Add function to destroy rhashtable from atomic context
● We have guarantees no packets are walking on this structure anymore

– First synchronize_rcu() guarantees this.

Loading nf_tables ruleset (5)

● Removing first synchronize_rcu()
– This one is harder.

● Move generation mask away from struct nft_rule
– Add struct nft_rule_head arrays, store generation mask here.

– Keep two arrays, one for each generation

– Packets walk either of the two arrays versions

● Problem:
– Array structure adds more complexity:

● Array shift in case of rule insertion.
● Array needs to be expanded.

● Proof-of-concept patch shows no performance impact.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

