
TC removal
(okay, just kidding)

Florian Westphal

NFWS 2016, Amsterdam

June 2016

4096R/AD5FF600 fw@strlen.de

1C81 1AD5 EA8F 3047 7555

E8EE 5E2F DA6C F260 502D

nftables+egress, current state

I it doesn’t exist

I nft netdev family allows attaching nft ruleset to a device

I traversed during ingress, same as tc ingress

iptables+egress, current state

I it doesn’t exist either

I -j CLASSIFY to set skb->priority

I doesn’t work universally (can only select class of upper qdisc)

I Some use -j MARK and fwmark filters in tc

Current egress arch w. qdiscs/ wo bypass

I xmit routine takes qdisc root lock

I invokes root_qdisc->enqueue(skb)

I qdisc enqueue function invokes tc_classify
I gives the class, qdisc calls
I class->qdisc->enqueue skb
I might result in another call to tc_classify

examples: HTB + PRIO + fq codel or HFSC+DRR+codel

I qdisc unlock / dequeue op

I classification is serialized via root qdisc lock

Ugly Hack ...

Did hack to split enqueue+classify.

I xmit routine calls root_qdisc->classify(skb, map)

before taking root qdisc lock

I classify calls classify again if needed:
class->qdisc->classify(skb, map)

I map: allocated on stack, describes path through qdisc hierachy

struct qnode { struct qdisc *q;

void * class; }

struct map { u8 depth;

struct qnode[MAX_DEPTH]; }

Classification steps assign q and class for each step
Node 0 is *leaf*

Ugly Hack ... (2)

After root qdisc lock is taken:

q = map[0].qdisc;

err = q->enqueue(skb, q, map[0].class);

if (err...)

for (i = 1; i < map.depth; i++) {

q = map[i].qdisc;

q->notify_enqueue(skb, map[i].class);

}

Only leaf qdiscs implement enqueue
qdiscs that delegate queueing (eg. to a pfifo) implement a notify
function that does needed maintenance work (e.g. mark class
ready for xmit)

problems, summary

I several stats just do foo++ → percpu counters

I must handle qdisc change or class removal during/after
lockless classify

I some actions need treatment (e.g. mirred)

I did not see any showstoppers so far, police and estimators
should be fine (already use locks)

I . . . do you?

I do not think it makes sense to add nft egress at this time

I nft would not scale either at the moment if run w. qdisc
locking

I . . . so its even too early for “integrate w. qdiscs” vs ”new
schedulers“ debate

Next up: some open nft issues

nftables – open issues

I keyword collisions: uid saddr

I can’t avoid keywords but we can’t escape from allowing
arbitrary strings in some places

I can’t just treat next item as literal:
meta uid { user, root, saddr, foo, ip }

I back- and forward compatibility: e.g. jump flow

I flow is now a statement – it fails but this used to work

Time to add grammar number to output?
type filter revision 42

Hannes Sowa: reserve __ prefixed strings
Then use defines for new keywords

not-so-nice

I add filter ip saddr vs. ip addr – can’t yet dump list of
header names, even though nft has textual descriptions

open issues

I raw instructions – just support existing (libnftnl) debug
output as input?

I seems like best option, extend libnftnl to parse str, have nft
pass [some stuff] to libnftnl

I e.g. allow something like

ip protocol { udp, tcp } [payload \

load 2b @ transport header + 2 => reg 1]

== 53

to test udp and tcp port(s) in one rule
I need to change nft to print raw insn on output as well if

deliniarization fails
I how to handle register allocation?

