

NFWS 2016
Daniel Mack, Red Hat

<daniel@zonque.org>

Application / Service / Task
specific netfilter rules

Current ways for matching traffic

We currently have ways to filter network
traffic based on

● Destination, source, address type, …
● Source port, destination port, …
● CPU, owner, socket, …
● …

What we'd like to see

● Apply netfilter rules to individual tasks
(processes/PIDs), or group of tasks
(applications/services)

● Make task matches orthogonal to other rule
details, such as destination/source port/IP

● Anticipated use cases are not limited to
filtering, but cover accounting as well (this
comes for free in the netfilter framework)

For instance …

● “Allow all outbound traffic from Firefox”
● “Allow inbound traffic to all ports bound by

postgresql, if it comes from a 10.10.0.0/16
IP”

● “Count all traffic sent and received by nginx”
● “Tell me which application used up all my

mobile bandwidth”

Grouping tasks

● Applications usually consist of multiple
tasks (processes/PIDs)

● Grouping them into logical units is essential
for applying resource limits and handle
them as “applications”

● systemd uses the terms “unit” and “service”
(systemd is however not the only userspace component that is in
need for such mechanisms)

Examples for task grouping

 CGroup: /system.slice/nginx.service
 ├─23285 nginx: master process /usr/sbin/nginx -g daemon on; master_process on;
 ├─23286 nginx: worker process
 ├─23287 nginx: worker process
 ├─23288 nginx: worker process
 └─23289 nginx: worker process

 CGroup: /system.slice/system-postgresql.slice/postgresql@9.4-main.service
 ├─ 8062 postgres: db1 db1 ::1(44389) idle
 ├─15150 /usr/lib/postgresql/9.4/bin/postgres -D /var/lib/postgresql/9.4/main
 ├─15152 postgres: checkpointer process
 ├─15153 postgres: writer process
 ├─15154 postgres: wal writer process
 ├─15155 postgres: autovacuum launcher process
 ├─15156 postgres: stats collector process
 ├─20014 postgres: db2 db2 ::1(42452) idle
 └─28625 postgres: db3 db3 ::1(35615) idle

cgroup matches

● cgroups v1 (indirection through net class):

● cgroups v2 (directly via cgroup path):

echo 1 > /sys/fs/cgroup/…/net_cls.classid
iptables -A OUTPUT -m cgroup --cgroup 1 …

iptables -A OUTPUT -m cgroup –path … …

So – all is good?

● No, unfortunately not
● The current implementation only works

reliably for egress traffic
● For ingress, rules are not executed unless

the stream is established
● Hence, the current implementation leaks

initial packets and is unusable

iptables-extensions(8)

IMPORTANT: when being used in the
INPUT chain, the cgroup matcher is
currently only of limited
functionality, meaning it will only
match on packets that are processed
for local sockets through early socket
demuxing. Therefore, general usage on
the INPUT chain is not advised unless
the implications are well understood.

Possible solutions

● How can this be fixed?
● 3 competing solutions have been

implemented

Solution #1: early demux

● Add early demux support to xt_cgroup
● No userspace change required

Problems:
● Does not work for multiple targets (ie, UDP)
● Does currently only work for simple

protocols (not for SCTP, DCCP etc)

Solution #2: postpone checks via
flag

● In case we cannot make decision on the
packet at ingress time, set a flag and redo
the check later

● No userspace change required

Problems:
● Flagged packets will travel INPUT rules

twice

Solution #3: LOCAL_SOCKET_IN

● Add a new chain type that is executed after
demux, but before forwarding to local process

● Needs a backwards-compatible change in
userspace

● Needs hookups in several protocols
● Chain is run for every recipient, ie, possibly

multiple times for a single UDP packet

Current layout

PREROUTING

FORWARD

POSTROUTING

INPUT OUTPUTLocal process

LOCAL_SOCKET_INPUT

PREROUTING

FORWARD

POSTROUTING

INPUT OUTPUTLocal process

LOCAL_SOCKET_INPUT

Possible issues with
LOCAL_SOCKET_INPUT

● It adds load to the input path if enabled
(same as LOCAL_INPUT, but per receiving
task)

● Semantic change: not all packets that are
ACCEPTed in LOCAL_IN will make it to
LOCAL_SOCKET_IN

● What about raw sockets?

Thoughts?

Let's discuss the pitfalls and possible alternatives!

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

