
Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

The Routing Cache is Dead,
Now What?

David S. Miller

Red Hat Inc.

Netfilter Workshop 2013, Copenhagen, Denmark, 2013

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

1 Paths

2 Major Components

3 Incidental and Unforeseen Changes

4 Future Improvements

5 Netfilter Angle

6 The End

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

Old Path

Hash table lookup
Keyed on all flow key members
Slow path FIB lookup on hash lookup miss
Hash table layout and contents unpredictable
Therefore, performance unpredictable
Table contents controllable by remote entities
Design fundamentally lends itself to DoS attacks
Garbage collection

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

Old Path - Outline

Hash table demux, found? If yes, we’re done.
fib_lookup(), get FIB nexthop entry.
Source validation.
Build route cache entry, potentially run GC.
Lookup neighbour, attach to route.
Lookup inetpeer, attach to route.
Insert route cache entry to hash table.
Ok, finally, we’re done.

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

New Path

FIB lookup performed on every route lookup
FIB nexthop entry contains prebuilt cached route
Lots of tricks to make such route sharing legal
... and lots of tricks to make this not so costly
Advantage: Lookup cost is consistent and predictable
Remote entities have zero influence over table
Therefore DoS like that of GC’d hash table is simply
impossible

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

New Path - Outline

fib_lookup(), get FIB nexthop.
Source validation.
Use any nexthop exceptions found....
else use FIB nexthop cached dst, if exists...
else build a new cached dst if possible.
Done.

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

Uncached Neighbour Entries

Our ipv4 routes no longer cache nexthop ARP entries
This is necessary for sharing local subnet routes
Instead, neighbour looked up at packet output time
Compensated by new, cheaper hash, and hash demux
inlining
Bonus side effect, no more “neighbour cache overflow”
Yoshifuji HIDEAKI recently removed route neigh caching
from IPV6 too

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

TCP Metrics Cache

All dynamically changing route metrics moved here
Needed to increase route shareability
All route metrics are now read-only, kernel wide
Cache is maintained in an RCU quick-demux hash table
Demux happens at TCP connection setup and teardown
Per-hashchain LRU is employed, max chain depth is 5
Metrics timeout increased to 60 minutes, was 5 minutes
Old timeout an unintented side effect of ip_rt_gc_timeout
Netlink based dump/get/del added by Julian Anastasov
Many bugs fixed by Eric Dumazet and Julian

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

FIB Nexthop Exceptions

PMTU and redirects are an impediment to route sharing
Cache of exception entries hangs off of fib_nh
Managed as an LRU hash table similar to TCP Metrics
Cache
When PMTU or Redirect hits shared route, we make an
entry
Route lookup consults exception table before using shared
route
Side note: Trying to do metrics in inetpeer was a huge
mistake.

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

Reverse Path Filtering

For input routes, we have reverse path filtering
Validation that packet came from where it should
This is expensive, up to two extra FIB lookups
Old code actually did validation unconditionally
Besides RP filtering, used also for traffic classification
New code eliminates lookups completely when possible

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

Per-cpu FIB cached routes

Initial implementation creates one shared route in FIB
nexthop
Causes cache thrashing on output, especially for loopback
Eric Dumazet to the rescue
FIB nexthop output route cache becomes per-cpu
Input route cache is still just one entry

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

Socket Pre-Demux

Route lookups without routing cache now faster!
At ip_rcv() we call per-protocol pre-demux handler
Only TCP supported at the moment
Pre-demux done before input route lookup
Pre-demux protocols cache input routes in sockets
Upon pre-demux, cached input route attached to SKB
ip_rcv() sees this and can skip route lookup
Complex trie based route lookup eliminated
Decrease number of demuxes on input by one

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

Remove Double-Demux

Every FIB lookup does two trie lookups for non-local
destinations
Once in local table, then once in global table
Doing two lookups is pointless in almost all cases
Ordered lookups in 2 tables only necessary for overlap
But nobody has overlapping entries between these tables
A combined global+local trie would work just as well
Problem is making it look sane to userspace
Still need to report routes in seperate tables
If overlapping condition created, revert to current behavior
If using more tables via FIB rules, also revert
Improvement is largest when FIB validation occurs

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

Tunnels

Some ipv4/ipv6 tunnels cache routes
But not all of them do
Caching is hard in certain circumstances
Problem is when parts of tunnel key is variable
Example: TOS handling in IPIP, fixed or inherited

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

IPV6 alignment with IPV4

IPV6 is actually more similar than one might expect
Route entries are cached in FIB trie itself
Problem is ipv6 does not try to share aggressively
Base FIB routes are always cloned into cached ones
Should be simple to share routes in ipv6:

We have TCP Metrics cache, even for ipv6, already
IPV6 routes no longer cache neighbours

Nexthop exceptions-like mechanism needed
Then sharing can be added

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

Cache Routes Aggressively

When you have an object that represents one destination
And you frequently do route lookups for it
Cache routes in that object
Just like sockets, which means validation before use
IPVS already does this
Tunneling is another area ripe for route caching

David S. Miller Routing Cache Post-mortem

Paths
Major Components

Incidental and Unforeseen Changes
Future Improvements

Netfilter Angle
The End

Thanks

Eric Dumazet
Julian Anastasov
Steffen Klassert
Herbert Xu
Tom Herbert
Jesper Dangaard Brouer

David S. Miller Routing Cache Post-mortem

	Paths
	Major Components
	Incidental and Unforeseen Changes
	Future Improvements
	Netfilter Angle
	The End

