
Conntrack stuff

Florian Westphal

NFWS 2016, Amsterdam

June 2016

4096R/AD5FF600 fw@strlen.de

1C81 1AD5 EA8F 3047 7555

E8EE 5E2F DA6C F260 502D



Conntrack + net namespaces: current -next state

I single table, single size limit

I but maxlimit counts per net namespace

I 1k namespaces: max * 1k connections possible



several bugs when assuming rogue netns

I resource accounting: Its easy to fill up table from a container

I any container can just set its conntrack_max to ludicrous
value

I could check vs. init namespace, but . . .

I maxlimit reached? Create new ns, fill that up too ... (repeat)

I zones direction support added local DoS hole, from
deedb5903 commit log:

Note that zone identifiers can not

be included into the hash mix anymore

No clue how to fix this
Seems netns require trusted environment



misc. netfilter netns stuff

I stupid netns init dependencies
I netns exit path (netlink event sk already zapped? crash)
I error unwinding (did not reach nfqueue netns init? crash)

I both issues are fixed

I ... by making 3 ptrs per netns, even though all namespaces
have same content



break

Questions so far?
Next up: conntrack extensions



Re-thinking conntrack extensions

I Connection is represented by struct nf_conn

I fixed-size, allocated from a kmem cache

I contains essential info, such as tuples, timer, refcnt
I also tcp conntrack state (seq/ack, window, etc)

I has ptr to struct nf_ct_ext for extensions

I extension blob is kmalloc’d and free’d via rcu



Conntrack extensions

10 extensions exist at the moment

I helper support (e.g. ftp)

I NAT

I accounting (packet/byte stats)

I conntrack event cache

I ... and more



Pros and cons

I pro:
I don’t have to allocate mem for rarely-used extensions
I allows non-fixed-size extensions

I con:
I has some overhead: 40 bytes per conntrack just for metadata
I need one extra deref to access data

I → move some frequently used extensions into the main
structure (zone for instance)



some numbers ...

struct description size in bytes

nf conn base structure 288 (320 w. align)
nf ct ext extension head 40
nf conn help helper base struct > 24
nf conn nat nat 32
nf conn seqadj sequence adjustment 24
nf conn ecache event cache 24
nf conn counter accounting 32
nf conn tstamp timestamp 16
nf conn timeout timeout 8
nf conn synproxy synproxy 12
nf conn label conntrack labels 8 to 24

New extension grows nf_ct_ext struct by 2 byte



Move nat?

I pro:
I could get rid of PREALLOC code
I container use-cases normally require nat for external

connectivity
I will most likely NOT increase nf_conn size (hwalign padding)
I 32 byte seems big, BUT it would be 16 (single-ll, no-need for

ct backptr anymore)

I cons:
I need to init unconditionally
I seems someone needs to be volunteered to give this a try



conntrack gc

I TCP established default timeout is huge (5days)

I conntrack early_drop only tosses !ASSURED

I less chance to find evictable entry after recent table merge

Proposal: add conntrack gc worker. If we can’t allocate new
conntrack:

1. do early_drop (search adjacent buckets for !ASSURED

2. schedule worker

3. worker can walk entire table (bh on)

3.1 also add ’soft timeout’ (min lifetime) sysctl, e.g. 1 hour
3.2 allow fast-recycle after that



per-conntrack spinlock

I used e.g. in tcp tracker code

I is this absolutely needed?
I No state transitions in most cases (established)
I But ack/seq etc updates expected

I just re-use normal per-bucket lock for this?

I not worth doing atm, just 2 bytes and we have to dirty CL
anyway (refcnt)



get rid of fastpath refcnt

I Normally refcnt is one (owner by timer)

I every ct lookup bumps refcnt

I also every skb_clone or copy

I last put: kfree

I could avoid it for most cases: see DST_NOREF

I would need to switch to call_rcu – can’t use
SLAB_DESTROY_BY_RCU anymore, as lookup can’t use
atomic_inc_not_zero, and timer can fire in between


