
© 2014 VMware Inc. All rights reserved.

Open vSwitch with conntrack
Jesse Gross
Netfilter workshop 2014

Brief Background on Open vSwitch
•  The goal of OVS is to be a programmable switch.
•  Implements both traditional switching functionality as well

programmability through OpenFlow.
•  Frequently used to build larger networking applications for OpenStack,

network virtualization, etc.

•  Most functionality is implemented/evaluated in userspace and a set of
flows are programmed into the kernel with matches and actions.

Example:
Traditionally switch pipelines perform L2 switching based on VLAN ID.
With OVS, GRE key can be substituted with no changes or mapping.

2

L2 Learning Switch – Example Flow
Userspace maintains MAC tables and generates flows with matches and
actions for traffic that is flowing through the switch.

Match:

recirc_id(0),skb_priority(0),in_port(1),eth(src=b2:1a:
43:d5:fa:4c,dst=2a:00:8f:
31:f6:49),eth_type(0x0800),ipv4(src=30.0.0.1/0.0.0.0,d
st=30.0.0.2/0.0.0.0,proto=1/0,tos=0/0x3,ttl=64/0,frag=
no/0xff)

Action:
Output: port 2

3

Problem: Stateful or Non-Flow Based Services
•  OVS is good for stateless, flow based networking.
•  In many cases, this provides the means to compose a network:

–  Switching
–  Routing
–  Build your own network processing pipeline

Largely leaves out “services” that might be inserted into that network.

Firewalls are an obvious gap.

How to retain the benefits of OVS in these situations?

4

Implementing a Firewall
Currently, two ways to implement a firewall in OVS:

–  Match on TCP flags (Enforce policy on SYN, allow ACK|RST)
•  Pro: Fast
•  Con: Allows non-established flow through with ACK or RST set, only TCP

–  Use “learn” action to setup new flow in reverse direction
•  Pro: More “correct”
•  Con: Forces every new flow to OVS userspace, reducing flow setup by orders of

magnitude

–  Neither approach supports “related” flows or TCP window enforcement

5

Integrating conntrack
•  OVS can call into the kernel connection tracker:

–  Large library of protocol support and ALGs for related flows.
–  Automatically get benefit of performance optimizations.

•  A stateless flow can select a class of traffic that needs to be tracked,
passing matching packets off to the conntracker for further evaluation.

•  Result is the state of the flow that can be matched by the flow table:
–  NEW
–  ESTABLISHED
–  RELATED
–  INVALID

•  Conntrack zones provide isolation between OVS flows (if desired).

6

What is a flow?
OVS and conntrack may have different ideas of what a flow is.

Open vSwitch
–  OVS supports a large number of fairly fine-grained fields, including those not

traditionally considered to be part of a “flow” (i.e. IP TTL).
–  User supplies wildcards so actual match can range from very broad to very

narrow.

Connection tracker
–  Flow is defined by the protocol definition and related ALGs (such as FTP).
–  Typically something like a 5-tuple

OK if these differ: OVS is just trying to select when and how connection
tracking is applied.

7

Stateful Firewall – User’s View
Goal:

–  All outbound traffic is allowed, added to state table.
–  Inbound traffic is allowed if part of established connection.

OVS Flows:
Outbound:

 Match: in_port=inside

 Action: conntrack(zone=tennant), output:outside

Inbound

 Match: in_port=outside

 Action: conntrack(zone=tennant), recirculate

 Match: conntrack_state=established

 Action: output:inside

8

Going Further

9

Problem extends to a variety of other possible situations besides
firewalls.

Other examples that have come up:
–  NAT
–  Deep packet inspection
–  Load balancing
–  QoS (largely solved already though)

Connection tracking is probably the best place to start and could serve
as a template. See Thomas’ presentation for more.

