
Google Confidential and Proprietary

TCP stack scalability
multiqueue NICS can hurt, when
stack still use a 15 years old design

Google Confidential and Proprietary

We use per socket spinlock (sk_lock.slock)

It mostly works in the fast path, when there is no contention.

We use RCU lookups (2.6.29+) to find ESTABLISHED/TIMEWAIT
sockets. Tricky part is the SLAB_DESTROY_RCU to avoid having too
much memory queued for freeing.

It mostly works for well behaving patterns, as packets can be
processed in // on different cpus.

Google Confidential and Proprietary

TCP listener syndrom

All non matching packets (SYN packets, ACK packets, ...) must lock the
listener socket.

Many cpu can spin on this listener spinlock, and the hold duration of
this spinlock can be very long in some pathological cases.

Google Confidential and Proprietary

The SYNACK retransmit timer syndrom

For historical reasons, tcp_request_sock are very small (112 bytes),
contain no individual timer for example.

So the SYNACK retransmit timer uses a single timer (per listener), and
has to lock the listener when doing the retransmit logic.

If the listen(backlog) is increased too much,
inet_csk_reqsk_queue_prune() takes age, while holding the listener
lock. All other cpus are spining...

The recent (linux-3.1) change of initial SYNACK timer from 3 sec to 1
sec increased the problem by a 200% factor.

#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */

Google Confidential and Proprietary

Add a per {tcp}_request_sock timer

Permits better scalability, at the cost of an increase of memory
requirements. It makes TCP_DEFER_ACCEPT handling way more
practical. (check netdev archives for attempts to avoid spurious
SYNACK retransmits)

Typical listener queue is limited by 65536 elements. Adding more
SYN_RECFV is a problem because of the SYNACK retransmits
(We still need SYNCOOKIES !)

65536*80 = 5 MBytes

In practice, many listeners use a much smaller backlog
(somaxconn default value is 128, tcp_max_syn_backlog is 1024)

Google Confidential and Proprietary

The SO_REUSEPORT problem

A SYN message has to select one listener in a list of available listeners,
using a custom hash function.

Problems :

- This hash is different from the NIC mq or RPS hash.
- If a listener disapears or a new one is created,
 the third packet might not find the corresponding request_sock
- The thing doesnt really scale (say if you have 128 cpus)
- SYN packet (and 3rd packet) can be handled by a different cpu than
the cpu doing the accept()
- many cpus can still spinlock on a listener, while SO_REUSEPORT
was meant to address this problem.

Google Confidential and Proprietary

New common shared_listener structure

Each listener 'socket' has a link to a (possibly shared if
SO_REUSEPORT is used) structure

- Structure protected by refcount and RCU

- SYN packets (or more generally all tcp packets) should only perform
RCU lookups.

- Not sure we need to link all request_sock in this structure : We could
rely on SYNACK retransmit timer to perform the garbage collection if
the listener was dismantled. If we want to keep track of them, we
probably need a hashed array to keep the cost of inserting/removing a
request_sock small enough.

Google Confidential and Proprietary

New common shared_listener structure (cont)

- Use a per_cpu_counter to keep track of count of request_sock
 (maybe need to check what are precise @backlog requirements : an
atomic_t might be needed)

- Keep track of all real sockets bound to the same entity
(SO_REUSEPORT)

- After 3WHS is completed, the selection of the socket can now use
better strategy to favor cpu affinity, instead of a custom hash, having to
parse all sockets. (no false sharing)

Google Confidential and Proprietary

request_sock (SYN_RECV) inserted in regular TCP ehash
table

- Current ehash has one chain for ESTABLISHED sockets, one chain
for TIME_WAIT sockets.

524.288 slots on typical machines today.

- Extend TIME_WAIT chain to contain SYN_RECV sockets as well.

-> no need for a separate hash table, better cache locality.
-> no need for separate locking. Reuse the existing ehash_locks
-> The third packet of 3WHS does a regular lookup and finds the
SYN_RECV immediately.

Google Confidential and Proprietary

The listener socket becomes a small entity

Its lock protects:

- the fields read/updated by get/setsockopt()
- The accept() queue of sockets
- cloning the socket when 3WHS is completed

Google Confidential and Proprietary

MISC & User visible changes

tcp_diag might be easier, we can remove some complex code dealing
with the SYN_RECV sockets.

netstat (/proc/sys/net/tcp) / ss (netlink) output might interleave
SYN_RECV 'sockets' in the other sockets, instead of giving separate
blocks.

SYN attacks, and other kind of attacks dont hit anymore a highly
contended spinlock. No more multiqueue multiplicative slowdown.
No more hacks to try to filter the packets.

