

nftables: a new packet filtering framework
for Netfilter

pablo@netfilter.org
OSD 2013

Copenhague, Denmark

mailto:pablo@netfilter.org

nftables: Intro

● New kernel packet filtering framework to replace iptables.
● No changes in the core infrastructure:

– Netfilter hooks

– Connection Tracking System

– NAT

● Designed from lessons learnt from iptables.
● Provides backward compatibility infrastructure.
● Nftables released in March 2009 by Patrick McHardy.
● Currently under active development.

nftables vs. iptables: Architecture
● Pseudo-state machine in kernel-space (similar to BPF).

● Registers: 4 general purpose (128 bits long each) + 1 verdict.

● Provides instruction set (can be extended):

– reg = pkt.payload[offset, len]

– reg = immediate(value, len)

– reg = cmp(reg1, reg2, EQ)

– reg = byteorder(reg1, NTOH)

– reg = pkt.meta(mark)

– reg = (reg1 & mask) ^ xor)

– reg = lookup(set, reg1)

– reg = ct(reg1, state)

– reg = lookup(set, data)
● New extensions are implemented using this instruction set.

● Netlink interface: kernel ↔ userspace (http://1984.lsi.us.es/~pablo/docs/spae.pdf)

nftables vs. iptables: Architecture

● Extensions: Matches and targets
● New extensions are written in C:

– 1 Linux kernel module: xt_blah.c
– 1 libxt_blah.c file under user-space iptables tree.

● Binary array containing the rule-set.
● communication kernel ↔ userspace: Use

setsockopt()/getsockopt()
● Poor incremental dynamic rule-set updates
● Limitations:

– Extending existing extensions

nftables vs. iptables: Rule handling

● Adding rule: match ip saddr 1.1.1.1 tcp dport 80, accept:
– Step 1: Parse command line

– Step 2: Build rule from user-space using instruction set:
● Reg1 = pkt.payload(offset(ip saddr), 4)
● Reg2 = immediate(1.1.1.1, 4)
● RegV = cmp(reg1, reg2, EQ) // implicit return if mismatch
● Reg1 = pkt.payload(offset(tcp dport), 2)
● Reg2 = immediate(80, 2)
● RegV = immediate(DROP)

– Step 3: Convert that to netlink and pass message with code to kernel.

● Deleting rule
– Step 1: Dump rule-set (to check which one to delete)

– Step 2: Delete by rule identifier

nftables vs. iptables: Rule handling

● Adding rule: Match -s 1.1.1.1 -p tcp –dport 80, accept:
– Step 1: Parse command line

– Step 2: Build rule match and target: use built-in source, tcp match and
standard target

– Step 3: Get rule-set from kernel (binary), update it with rule

– Step 4: Pass rule-set to kernel space via setsockopt()

● Delete rule:
– Step 1: Parse command line

– Step 2: Convert rule to binary.

– Step 3: Dump existing ruleset (in binary).

– Step 4: Find rule matching in ruleset (binary comparisons)

– Step 5: If found. Allocate new rule-set, build it and pass it to kernel-space.

Nftables vs. Iptables from developer

● Iptables provided no third party library
● Libipt/libipt6 probably, you have to work with

binary blobs
● Nftables provides libnftables and will provide

high level library to work in an object oriented
fashion.

nftables from userspace

● Backward compatible:
– Utility derivated from iptables/ip6tables with same syntax.

– You can use all existing xtables modules.

– You can still add new xtables extensions in the same fashion.

– No need to learn new utilities if you don't want to.

– No need for new documentation.

– No need to update your scripts.

● But also, new features without breaking backward compatibility:
– xtables-event : Reporting changes in tables/chains/rules

– Better incremental rule update support: Matches internal state is not lost

– Enable/disable the chains per table that you want

– … more improvements for xtables yet to come

nftables from userspace

● New utility nft (still under work):
– New syntax, new features.

● Fast lookups:
– tcp dport { 80 => accept, 22 => drop }

– ip daddr {
 192.168.0.0/24 => jump chain1,
 192.168.1.0/24 => jump chain2,

}

– ip saddr . tcp dport {
1.1.1.1 . 80 => accept,
1.1.1.2 . 22 => drop,

}

nftables summary

● One single kernel framework for packet filtering
allowing long term evolution.

● Two userspace tools:
– Backward compatible utility:

● Same syntax + same features + new features

– New utility:
● New syntax + more cool new features

● Still work in progress.
● There will be user-friendly documentation.

Nftables summary (2)

● Grab the code
– Backward compatible utility:

● Kernel: git://1984.lsi.us.es/nftables
● Library: git://1984.lsi.us.es/libnftables
● User-space: git://1984.lsi.us.es/iptables-nftables

– New utility:
● Library: git://git.netfilter.org/libnl-nft
● User-space: git://git.netfilter.org/nftables

nftables: a new packet filtering framework
for Netfilter

pablo@netfilter.org
OSD 2013

Copenhague, Denmark

mailto:pablo@netfilter.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

