

Memory mapped netlink

Patrick McHardy <kaber@trash.net>

Netfilter Workshop 2011

Freiburg im Breisgau, Germany

mailto:kaber@trash.net

Memory mapped netlink
Current state of affairs

● Netlink uses regular socket I/O
● Messages are constructed into a socket buffer's

data area, then copied to userspace or vice
versa

● Performance doesn't matter much in many
cases since most netlink subsystems have very
low bandwidth demands. Notable exceptions
are nfnetlink_queue, ctnetlink and possibly
nfnetlink_log.

Memory mapped netlink
Current state of affairs

● No need to be wasteful though, even low
bandwidth subsystems can benefit from
improved performance, especially during large
dumps

Memory mapped netlink
Basic concept

● Have userspace set up a shared memory
mapped circular ring (modelled after
AF_PACKET, see
Documentation/networking/packet_mmap.txt)
for RX and TX

● In kernel->userspace direction, attach frames
from ring to socket buffer heads and perform
message construction directly into the memory
mapped area. Userspace parses messages
from that area.

Memory mapped netlink
Basic concept

● In userspace->kernel direction parse the
messages directly from the memory mapped
area

Memory mapped netlink
Basic concept

0 1 2 3 4 5Ring

Frames

Kernel

Userspace

skbnl_subsys_msg_build()

void *buf libnl_subsys_msg_parse()

Memory mapped netlinkk
Basic concept

● Ring frames are of fixed size specified by
userspace and contain data necessary for
synchronizing processing between kernel- and
userspace, meta data and the actual message
data

● Synchronization happens by means of a status
descriptor that specifies ownership of the frame
and the operation to perform

Memory mapped netlink
Basic concept

● Frames to be processed by userspace are
marked using NL_MMAP_STATUS_USER,
after finishing processing userspace releases
the frame back to the kernel by resetting the
status word to NL_MMAP_STATUS_KERNEL

● Messages that exceed the ring data size are
queued to the socket receive queue and
userspace is instructed to invoke recvmsg() by
setting the status word to
NL_MMAP_STATUS_COPY

Memory mapped netlink
Basic concept

● Similary, frames that originate from a
subsystem not supporting memory mapped
operation that are delivered to a memory
mapped socket are queued and userspace is
instructed to invoke recvmsg()

● Frames from userspace to the kernel are stored
in the ring and their status word is marked
using NL_MMAP_STATUS_SEND. To trigger
processing on the kernel side, userspace
invokes sendmsg() with msg.iov.iov_base =
NULL.

Memory mapped netlink
Implementation details

● Userspace ring setup is performed using
setsockopt() calls for RX and TX rings
(NETLINK_RX_RING/NETLINK_TX_RING)
and a call to mmap() to map the resulting ring
area into the process' address space:

setsockopt(fd, NETLINK_{RX,TX}_RING, ...);

ring = mmap(NULL, size, PROT_READ |
PROT_WRITE, MAP_SHARED, fd, 0);

Memory mapped netlink
Implementation details

● Message ordering details are problematic:
socket buffer data area points to ring frames of
receiving sockets, meaning socket lookup has
to be performed before constructing messages,
not as usual when delivering them. Result is
that message order in the ring depends on
allocation time, not delivery time. When order
matters (nfnetlink_queue in some cases)
construction and delivery is performed
atomically, allocation usually isn't.

Memory mapped netlink
Implementation details

● Since kernel netlink subsystems usually
perform message validation before actually
processing the contents, the contents of the
shared memory area must not be allowed to be
changed by userpace change after validation.

● Only a single mapping of the ring is allowed,
also socket file descriptor must not be shared
(f.i. through AF_UNIX sockets). When either
condition is false, fallback to copying.

Memory mapped netlink
Implementation details

● Because of the need to synchronize processing
between kernel- and userspace, only unicast
communication is supported.

● Conversion to use mmaped netlink in the kernel
is easy: replace message allocation by
netlink_alloc_skb(ssk, size, dst_pid, gfp_mask)

● Dump are using mmaped I/O automatically

Memory mapped netlink
Implementation details

● For multicast ring could theoretically be
mapped into multiple processes address
spaces and descriptors be separated from data
area. Synchronization would then depend on
slowest of all processes though, one hanging
process would break netlink communication for
everyone sharing a ring.

Memory mapped netlink
Implementation details

● Different approach to supporting multicast is to
allow memory mapped I/O as long as only a
single listener is subscribed to a multicast
group, which is a very common case for high
bandwidth netlink subsystems.

Memory mapped netlink
Implementation details

● Similar to unicast case, message destination
would have to be determined at allocation time
instead of transmission time. Does not matter
though since a process newly subscribing to a
group can't know which message will be the
first received one anyways.

Memory mapped netlink
Implementation details

● Flow control during dumps with regular I/O is
happening by checking socket queue receive
space during recvmsg() call

● Obviously doesn't work with memory mapped
I/O since no recvmsg() invocation. Currently
done in netlink_poll() once userspace has
(supposedly) processed all messages in the
ring

Memory mapped netlink
Implementation details

● In userspace support for testing has been
added to libmnl

● ring setup: mnl_socket_set_ring(sk, rx_size,
tx_size). Frame size is currently hardcoded.

Memory mapped netlink
Implementation details

● Reception:
mnl_socket_poll();

while (1) {

hdr = mnl_socket_get_frame(sk, MNL_RING_RX);

if (hdr->nm_status != NL_MMAP_STATUS_USER)

break;

<process frame>

<release frame back to kernel: update status>

mnl_socket_advance_ring(sk, MNL_RING_RX);

}

Memory mapped netlink
Implementation details

● Transmission:
hdr = mnl_socket_get_frame(sk, MNL_RING_TX);

if (hdr->nm_status != NL_MMAP_STATUS_KERNEL)

<handle error>

<build msg>

hdr->nm_status = NL_MMAP_STATUS_SEND;

mnl_socket_sendto(sk, NULL, 0)

Memory mapped netlink
Performance

● Due to lack of sufficiently fast hardware
(10Gbit), unfortunately only loopback testing
could be performed.

● Even better performance for real NICs
expected since loopback traffic most likely
benefits from CPU caching effects, decreasing
copying costs.

● Scenario: iperf over loopback for different
MTUs with nfnetlink_queue

Memory mapped netlink
Performance

1500 2500 3500 4500 5500 6500 7500 8500 9500 10500 11500 12500 13500 14500 15500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

mmaped netlink

MTU

M
b

it/
se

c

Memory mapped netlink
Performance

1500 2500 3500 4500 5500 6500 7500 8500 9500 10500 11500 12500 13500 14500 15500
0

50

100

150

200

250

300

stddev

MTU

M
b

it/
se

c

Memory mapped netlink
Performance

● Performance is roughly +200%-+300%,
depending on MTU, also more stable (both with
exceptions).

● For MTU of 4500-6500, variance peaks and
performance goes down. Scheduling effects
suspected (two CPUs, three demanding
processes), needs test on real network.

● PPS test on Gbit NIC with 64b packets shows
improvement of +400% (not included in
graphs).

Memory mapped netlink
State of development

● Working well, no known bugs
● Flow control and socket buffer accounting still

need a bit of work
● Submission to netdev will happen soon
● Code will be uploaded to kernel.org soon (today

or tommorrow):
git://git.kernel.org/pub/scm/linux/kernel/git/kaber
/nl-mmap-2.6.git

Memory mapped netlink
Thanks

● Harald for discussing the basic concept a
couple of hundreds time with me

● Davem for the suggestion to use page mapping
count to assure payload can't be modified after
validation on transmission

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26

