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Present ipset

● It's working, so why rewrite?

● Rigid userspace-kernel communication protocol
– getsockopt/setsockopt is ok

● Missing IPv6 support
● “Strange” restrictions for some set types
● Mistakes in the userspace syntax



7th Netfilter Workshop, Seville

Smooth upgrade path

● Netlink over setsockopt/getsockopt :-)
● Goal was: exactly the same interface as netlink 

(drop in)
● Dumping 



Hash functions I.

● Current kernel hash function: jhash2
● New Jenkins hash: jhash3
● Compare: 

– jenkins2

– jenkins3 by Bob Jenkins: 
http://www.burtleburtle.net/bob/c/lookup3.c

– murmur2 by Austin Appleby: 
http://sites.google.com/site/murmurhash/

– superfasthash by Paul Hsieh : 
http://www.azillionmonkeys.com/qed/hash.html 

http://www.burtleburtle.net/bob/c/lookup3.c
http://sites.google.com/site/murmurhash/
http://www.azillionmonkeys.com/qed/hash.html


Hash functions II.

● Patrick Schaaf's cttest program, extended:
– Statistical analysis of the hash functions: 

http://www.kfki.hu/~kadlec/sw/netfilter/ct2/

● http://www.kfki.hu/~kadlec/sw/netfilter/ct3/ 

http://www.kfki.hu/~kadlec/sw/netfilter/ct2/
http://www.kfki.hu/~kadlec/sw/netfilter/ct3/
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Hashing methods I.

● Rusty on hashing methods, assuming 64-bit
– http://rusty.ozlabs.org/?p=89

– http://rusty.ozlabs.org/?p=94

● Ipset is different:
– 32/64-bit machines

– Small data to store

– Optimize both for memory and speed

http://rusty.ozlabs.org/?p=89
http://rusty.ozlabs.org/?p=94
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Hashing methods II.

● Collision limit: 12 elements
– Single-linked list

– Single-linked list + doubling

– Flat hash: search by hashing again + doubling

– Flat hash: linear search + doubling

– Link four-element blocks + doubling

●  http://www.kfki.hu/~kadlec/sw/netfilter/hash/

http://www.kfki.hu/~kadlec/sw/netfilter/hash/
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Ipset protocol over netlink I.

● Message type is the command code: ADD, DEL
● Mandatory attribute: protocol version
● Additional command-specific attributes
● Two containers (nested attributes) for grouping 

sub-attributes or multiple elements
● Error handling 
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Ipset protocol over netlink II.

● A set type is identified by
– Typename

– Family: INET, INET6, UNSPEC (both)

– Revision

● A set is identified by
– Setname

– Typename

– Family
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Ipset protocol over netlink III.

● IP addresss attribute: simple attribute, not nested
– We know the family

– Spares memory 



7th Netfilter Workshop, Seville

Ipset protocol over netlink IV.

● Netlink dump is too rigid: currently no way to 
initialize dumping

● How to dump then (list/save) a given set only?
– Netlink patch required
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Locking: set types

● Simple linked list of set types
● Register and unregister

– Serialized by a mutex

– list_add|del_rcu

● Lookup
– RCU read-locking
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Locking: sets I.

● Fixed array of set pointers
● External set references store the index in the 

array
– Referenced sets are protected by a counter

– Makes swapping easy
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Locking: sets II.

● No locking
● Create, destroy a set, rename:

– Userspace commands only

– Serialized by the nfnl mutex of nfnetlink

● Swap two sets
– Userspace command only

– Serialized by the nfnl mutex of nfnetlink

– Pointer assignment is atomic
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Locking: set content

● Standard rwlock
● Handled by the core
● Could be made more fine-grained

– Set types which handle content locking

– For all other set types locking handled by the core



7th Netfilter Workshop, Seville

Timeout and gc I.

● Two flavours for all set type
– Without and with timeout support

● Again, data is small: don't waste memory
– Normal timer avoided

– Garbage collection instead

– Types recognize timed out entries
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Timeout and gc II.

● GC: don't run too often and too rarely either
– Timeout is measured in seconds: run at every 

timeout/3 seconds, but

– At most at every second

– At least at every three minutes
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Code generation for compiling

● For the hash types:
– Same hashing method for every type

– Every hash type exists in four flavours:
● IPv4 and IPv6
● Without timeout and with timeout

● Avoid manual code multiplication: code 
generation

● Current ipset: ugly, macro-based
● Ipset next: nice(r), token-replacement
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Ipset kernel – iptables

● set match and SET target
● Iptables error reporting is insufficient

– E.g. mistyped setnames must be reported

● setsockopt/getsockopt kept
– “Backward” compatibility

– No additional library dependency 
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Ipset, userspace I.

● Rewritten from scratch
● Mini ipset library

– Intermediate data handling

– Parsing, printing

– Type handling and cache

– Interface to (kernel) communication method

– Communication session handling

– Depends on libmnl
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Ipset, userspace II.

● Ipset itself:
– Type definitions

– User interface

– Kernel error decoding
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Unified syntax

● Set elem: part0[,part1[,part2]]
– 192.168.1.1,tcp:80,10.10.10.10

● Iptables match/target dir option: dir[,dir[,dir]]
– dst,dst,src

● Type: method:kind0[,kind1[,kind2]]
– hash:ip,port,ip

● Backward compatiblity
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Command syntax

● create, add, del, test, ...
– No need for two dash: --create, --add, ...

● Abbreviation, one-letter shortcuts
● Similar to ip
● Backward compatibility
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New generic option

● create, add, del, restore:
– ­­exist, ­!
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Timeout

● Every set type supports it:
– Option, not part of the element

create test hash:ip timeout 10

add test 10.0.0.1 timeout 0



bitmap:ip, bitmap:port types

● No change
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bitmap:ip,mac type

● Flag matchunset removed
● Entry can be added to the set without MAC

– MAC filled out at the first matching

– Timer starts when IP and MAC pair is complete
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hash:ip type

● Both IPv4 and IPv6 supported
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hash:net type

● Both IPv4 and IPv6 supported
● Both networks and host addresses can be stored
● Linear search in the list of different prefixes
● No builtin overlap checking
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hash:ip,port, hash:ip,port,ip and
hash:ip,port,net

● Both IPv4 and IPv6 supported
● Actually port and protocol
● Supported protocols:

– TCP, UDP

– ICMP, ICMPv6

– Anything else with zero “port”

● Limitation for the IP address from a /16 block 
removed
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hash:net,port

● New set type
● Arbitrary network or host IP address
● Similar to hash:ip,port
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iptree and iptreemap types

● Not implemented, but replaced with hash:ip
● Backward compatibility
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list:set type

● No change
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Testsuite

● Tests for all set types
– Without and with timeout

– IPv4 and IPv6

● Tests for the match and target
– IPv4 and IPv6
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Application: essence I.

● Old tool in Perl, rewritten for ipset
● The essence of a firewall:

– Raw table:
● Banned hosts and networks
● IP spoofing protection

– Filter table
● Policy
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Application: essence II.

● Simple “keyword = value” syntax
● General settings

– Logging, set parameters, etc

● Zone rules
– Spoof protection

● Policies 
– Rules for hosts, networks to play the role of 

servers, clients
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Essence: zone

zone = intranet

    interface = eth2

    address = 10.10.0.0/16, 192.168.1.0/24

zone = dmz

    interface = eth1

    address = 192.168.2.0/24

zone = internet

    interface = eth0

    address = 10.10.0.0/24, 0/0
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Essence: policy

policy = servername

    ip = 10.10.10.10

    service = http, https

    service = ssh

         allow = 10.12.0.0/24

    client = ping, http

    client = ssh

         deny = 10.100.0.1, 10.200.0.0/24



Todo list

● New protocol and netlink instead of sockopt √
● IPv6 support √
● Remove (hash type) limitations √
● Improved userspace syntax √
● Submission for kernel inclusion :-)



Thanks!
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