
ipset next

József Kadlecsik
<kadlec@blackhole.kfki.hu>

KFKI RMKI

mailto:kadlec@blackhole.kfki.hu

7th Netfilter Workshop, Seville

Content

● Problems with present ipset code
● Background questions
● New ipset: kernel part
● New ipset: userspace
● Application on top of ipset

7th Netfilter Workshop, Seville

Present ipset

● It's working, so why rewrite?

● Rigid userspace-kernel communication protocol
– getsockopt/setsockopt is ok

● Missing IPv6 support
● “Strange” restrictions for some set types
● Mistakes in the userspace syntax

7th Netfilter Workshop, Seville

Smooth upgrade path

● Netlink over setsockopt/getsockopt :-)
● Goal was: exactly the same interface as netlink

(drop in)
● Dumping

Hash functions I.

● Current kernel hash function: jhash2
● New Jenkins hash: jhash3
● Compare:

– jenkins2

– jenkins3 by Bob Jenkins:
http://www.burtleburtle.net/bob/c/lookup3.c

– murmur2 by Austin Appleby:
http://sites.google.com/site/murmurhash/

– superfasthash by Paul Hsieh :
http://www.azillionmonkeys.com/qed/hash.html

http://www.burtleburtle.net/bob/c/lookup3.c
http://sites.google.com/site/murmurhash/
http://www.azillionmonkeys.com/qed/hash.html

Hash functions II.

● Patrick Schaaf's cttest program, extended:
– Statistical analysis of the hash functions:

http://www.kfki.hu/~kadlec/sw/netfilter/ct2/

● http://www.kfki.hu/~kadlec/sw/netfilter/ct3/

http://www.kfki.hu/~kadlec/sw/netfilter/ct2/
http://www.kfki.hu/~kadlec/sw/netfilter/ct3/

7th Netfilter Workshop, Seville

Hashing methods I.

● Rusty on hashing methods, assuming 64-bit
– http://rusty.ozlabs.org/?p=89

– http://rusty.ozlabs.org/?p=94

● Ipset is different:
– 32/64-bit machines

– Small data to store

– Optimize both for memory and speed

http://rusty.ozlabs.org/?p=89
http://rusty.ozlabs.org/?p=94

7th Netfilter Workshop, Seville

Hashing methods II.

● Collision limit: 12 elements
– Single-linked list

– Single-linked list + doubling

– Flat hash: search by hashing again + doubling

– Flat hash: linear search + doubling

– Link four-element blocks + doubling

● http://www.kfki.hu/~kadlec/sw/netfilter/hash/

http://www.kfki.hu/~kadlec/sw/netfilter/hash/

7th Netfilter Workshop, Seville

Ipset protocol over netlink I.

● Message type is the command code: ADD, DEL
● Mandatory attribute: protocol version
● Additional command-specific attributes
● Two containers (nested attributes) for grouping

sub-attributes or multiple elements
● Error handling

7th Netfilter Workshop, Seville

Ipset protocol over netlink II.

● A set type is identified by
– Typename

– Family: INET, INET6, UNSPEC (both)

– Revision

● A set is identified by
– Setname

– Typename

– Family

7th Netfilter Workshop, Seville

Ipset protocol over netlink III.

● IP addresss attribute: simple attribute, not nested
– We know the family

– Spares memory

7th Netfilter Workshop, Seville

Ipset protocol over netlink IV.

● Netlink dump is too rigid: currently no way to
initialize dumping

● How to dump then (list/save) a given set only?
– Netlink patch required

7th Netfilter Workshop, Seville

Locking: set types

● Simple linked list of set types
● Register and unregister

– Serialized by a mutex

– list_add|del_rcu

● Lookup
– RCU read-locking

7th Netfilter Workshop, Seville

Locking: sets I.

● Fixed array of set pointers
● External set references store the index in the

array
– Referenced sets are protected by a counter

– Makes swapping easy

7th Netfilter Workshop, Seville

Locking: sets II.

● No locking
● Create, destroy a set, rename:

– Userspace commands only

– Serialized by the nfnl mutex of nfnetlink

● Swap two sets
– Userspace command only

– Serialized by the nfnl mutex of nfnetlink

– Pointer assignment is atomic

7th Netfilter Workshop, Seville

Locking: set content

● Standard rwlock
● Handled by the core
● Could be made more fine-grained

– Set types which handle content locking

– For all other set types locking handled by the core

7th Netfilter Workshop, Seville

Timeout and gc I.

● Two flavours for all set type
– Without and with timeout support

● Again, data is small: don't waste memory
– Normal timer avoided

– Garbage collection instead

– Types recognize timed out entries

7th Netfilter Workshop, Seville

Timeout and gc II.

● GC: don't run too often and too rarely either
– Timeout is measured in seconds: run at every

timeout/3 seconds, but

– At most at every second

– At least at every three minutes

7th Netfilter Workshop, Seville

Code generation for compiling

● For the hash types:
– Same hashing method for every type

– Every hash type exists in four flavours:
● IPv4 and IPv6
● Without timeout and with timeout

● Avoid manual code multiplication: code
generation

● Current ipset: ugly, macro-based
● Ipset next: nice(r), token-replacement

7th Netfilter Workshop, Seville

Ipset kernel – iptables

● set match and SET target
● Iptables error reporting is insufficient

– E.g. mistyped setnames must be reported

● setsockopt/getsockopt kept
– “Backward” compatibility

– No additional library dependency

7th Netfilter Workshop, Seville

Ipset, userspace I.

● Rewritten from scratch
● Mini ipset library

– Intermediate data handling

– Parsing, printing

– Type handling and cache

– Interface to (kernel) communication method

– Communication session handling

– Depends on libmnl

7th Netfilter Workshop, Seville

Ipset, userspace II.

● Ipset itself:
– Type definitions

– User interface

– Kernel error decoding

7th Netfilter Workshop, Seville

Unified syntax

● Set elem: part0[,part1[,part2]]
– 192.168.1.1,tcp:80,10.10.10.10

● Iptables match/target dir option: dir[,dir[,dir]]
– dst,dst,src

● Type: method:kind0[,kind1[,kind2]]
– hash:ip,port,ip

● Backward compatiblity

7th Netfilter Workshop, Seville

Command syntax

● create, add, del, test, ...
– No need for two dash: --create, --add, ...

● Abbreviation, one-letter shortcuts
● Similar to ip
● Backward compatibility

7th Netfilter Workshop, Seville

New generic option

● create, add, del, restore:
– ­­exist, ­!

7th Netfilter Workshop, Seville

Timeout

● Every set type supports it:
– Option, not part of the element

create test hash:ip timeout 10

add test 10.0.0.1 timeout 0

bitmap:ip, bitmap:port types

● No change

7th Netfilter Workshop, Seville

bitmap:ip,mac type

● Flag matchunset removed
● Entry can be added to the set without MAC

– MAC filled out at the first matching

– Timer starts when IP and MAC pair is complete

7th Netfilter Workshop, Seville

hash:ip type

● Both IPv4 and IPv6 supported

7th Netfilter Workshop, Seville

hash:net type

● Both IPv4 and IPv6 supported
● Both networks and host addresses can be stored
● Linear search in the list of different prefixes
● No builtin overlap checking

7th Netfilter Workshop, Seville

hash:ip,port, hash:ip,port,ip and
hash:ip,port,net

● Both IPv4 and IPv6 supported
● Actually port and protocol
● Supported protocols:

– TCP, UDP

– ICMP, ICMPv6

– Anything else with zero “port”

● Limitation for the IP address from a /16 block
removed

7th Netfilter Workshop, Seville

hash:net,port

● New set type
● Arbitrary network or host IP address
● Similar to hash:ip,port

7th Netfilter Workshop, Seville

iptree and iptreemap types

● Not implemented, but replaced with hash:ip
● Backward compatibility

7th Netfilter Workshop, Seville

list:set type

● No change

7th Netfilter Workshop, Seville

Testsuite

● Tests for all set types
– Without and with timeout

– IPv4 and IPv6

● Tests for the match and target
– IPv4 and IPv6

7th Netfilter Workshop, Seville

Application: essence I.

● Old tool in Perl, rewritten for ipset
● The essence of a firewall:

– Raw table:
● Banned hosts and networks
● IP spoofing protection

– Filter table
● Policy

7th Netfilter Workshop, Seville

Application: essence II.

● Simple “keyword = value” syntax
● General settings

– Logging, set parameters, etc

● Zone rules
– Spoof protection

● Policies
– Rules for hosts, networks to play the role of

servers, clients

7th Netfilter Workshop, Seville

Essence: zone

zone = intranet

 interface = eth2

 address = 10.10.0.0/16, 192.168.1.0/24

zone = dmz

 interface = eth1

 address = 192.168.2.0/24

zone = internet

 interface = eth0

 address = 10.10.0.0/24, 0/0

7th Netfilter Workshop, Seville

Essence: policy

policy = servername

 ip = 10.10.10.10

 service = http, https

 service = ssh

 allow = 10.12.0.0/24

 client = ping, http

 client = ssh

 deny = 10.100.0.1, 10.200.0.0/24

Todo list

● New protocol and netlink instead of sockopt √
● IPv6 support √
● Remove (hash type) limitations √
● Improved userspace syntax √
● Submission for kernel inclusion :-)

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

